Has dut mai unes ulleres atòmiques? 2014, Any Internacional de la Cristal·lografia

De com la vida d'ha protegit de l'oxidació: oxidoreductases

Xavi Carpena UCE_2014 Prades

3'

C-term

1144

	== 00	0441	
<u>Clonatge</u> :	pET 28a		PA1169
Producció:	<i>E. coli</i> BL21 DE3	5' U44N L2055H	5'-GAAC CCATATO 5'-TTCT AAGCTT
<u>Sobreexpressió</u> :	IPTG 0.1 mM (OD: 0.3-0.5) 16 hours at 18ºC		1
Purificació:	IMAC: (10-300mM Imid), 20mM Kpi,0.5M NaCl, pH7.4 SEC: S200, 20mM Kpi, 150 mM NaCl, pH7		

Esquema Procés Resolució Estructural per CRX

-LMB1_F10 (CS-II, 22) -LMB1_F11 (CS-II, 23) -LMB1_G5 (CS-II, 29) -LMB4_B3 (GS PEG 6K, C3) -LMB4_D2 (GS MPD, C2) -LMB13_H1 (Index, 85)

Dades.mtz

 $(\mathsf{F}_{\mathsf{hkl}}, \mathbf{X}_{\mathsf{hkl}}, \sigma_{\mathsf{hkl}})$

	2IUJ 2IUK 2FNQ 1LOX NSPLOX	1 1 1 1	MFPFGHKGQKIKGTMVVMQKNVLDINSITSVDGIVGTGLDFLGSALDTVT.FLASSISIQLISATKADG.GKGKVGKATNLRGKI.TLPTI MFGIFDKGQKIKGTVVLMPKNVLDFNAITSIGKGGVIDTATGILGQGVSLVGGVIDTATSFLGRNISMQLISATQTDGSGNGKVGKEVYLEKHLPTLPTL MHHHAIYNEVETGDREHAGTDATITIRITGAKG.RTDYLKLDKWFHNDFEAGSKE GVYRVCVSTGASIYAGSKNKVELWLVGQHGEVELGSCLRPTRNKEEEF MANDSIFPSPLKYLGAEQORSIDASRSLLDNLIPPSLPQYDNL		
1	2IUJ 2IUK 2FNQ 1LOX	89 101 58 49	GAKEEAYDAQFDWDSDFGIPGAFYIKNYMQNEFYLKSLILEDI. PNHGTIHFICNSWVYNSKHYKTDRIFFANNTYLPS. ETPAPLVKYR E EEL KNVRGD GARQDAFSIFFEWDASFGIPGAFYIKNFMTDEFFLVSVKLEDI. PNHGTIEFVCNSWVYNFRSYKKNRIFFVNDTYLPS. ATPAPLLKYR KEEFEVLRGD QYTWQGFDVGDIQLIELHSDGGGVS. GDPDWFVNRVIIISS. TODDVYSFFCFRWVIKDMVLFPGEATLPFNEVPAIVSEQRCKELE KVNVSKYLGSLLFVRLRKKHFLKEDAWFCWNISVQALGAAEDKYWFPCYRWVFGDGVQSLPVGTGCTTIVGDFQGLF0KHREQELE	<u>% Identitat S</u>	eq.
1	2IUJ 2IUK 2FNQ 1LOX NSPLOX	187 199 144 134 125	GTGERKEWDRIYDYDVYNDLGDPDKGEKYARPVLGG.SALPYPRRGRTGRGKTRKDPNSEKPGDFVYLPRDEAFGHLKSSDFLAYGIKSVAQDVLPVLT. GTGKRKDPDRIYDYDVYNDLGNPDGGD.PRFILGGCSIYPYPLRVRTGRERTRTDPNSEKPGDFVYLPRDENFGHLKSSDFLTYGIKSLADVIPLDFKS QRKLTYQWDYVSDDMPGN	2IUJ soybean lox 2 [,] 2IUK	'9%
1	2IUJ 2IUK 2FNQ 1LOX NSPLOX	285 296 196 186 175	DAFDGNLLSLDFDNFAEVRKLYEGGVTLPTNFLSNITFIFIIKELFRTDGEOFLKYPPPKVMQVDKSAWMTDEEFARETIAGLNPNVIKIIEEFPL AIFQLRVTSSEFESFEDVRSLYEGGIKLPTDILSQISPLPALKEIFRTDGENVLQFPPHVAKVSKSGVMTDEEFAREVIAGVNPNVIRRLOEFPP GIGSLFTMFENWDSYDDYHILYRNWILGGTPNMADRWHEDRWFGYQFLNGANPVILTRCDALPSNFPV ALKNSLNILLAFWKTLDDFNRIFWCGRSKLARRVRDSWQEDSLFGYQFLNGANPMLLRRVOLPAR ILKSASNLVYFQSGQGDGGLN	soybean lox 23 2FNQ <i>Plexaura homomolla</i>	3'7% 24'9%
	2IUJ 2IUK 2FNQ 1LOX NSPLOX	381 392 264 251 242	. SSKLDTQAYGDHTCIITKEHLEPNLGGLTVEQATONKKLFILDHHDYLIPYLRKINAN. TTKTYATRTIFFLKNDGT. LTPLATELSKPHPQGEEYGPV .KSTLDPTLYGDQTSTITKEQLEINMGGVTVEBALSTORLFILDYQDAFIPYLTRINSLPTAKAYATRTILFLKDDGT. LKPLATELSKPHPDGDNLGPE TNEHVNASLDRGKNLDERIKDGHIYIVDFKVLVGAKSYGGPVLEDIGYKVPDHLKHDEADIRYCAAPLALFVVNKLGH. LMPIAIQINQEPGPE .LVFPPGMEELQAQLEKELKAGTFFADPTALDNIKAN	1LOX Rabbit reticulocite	22'2%
	2IUJ 2IUK 2FNQ 1LOX NSPLOX	478 490 357 328 324	SEVYV PSSEGVEAYINLLAKAYVVVNDACYHOIISHWLNTHAVVEPEVIATNRHLSVVHPIYKLLFPHYRDTMNINSLARKSLVNADGIIEKTFLWG.RY SIVVLPATEGVDSTINLLAKAHVIVNDSGYHOIVSHWLNTHAVMEPEAIATNRHLSVVHPIYKLLYPHYRDTININGLAROSLINADGIIEKSFLPG.KY NPIWTPHEENEHDWMMAKFWLGVAESNFHOINTHLLRTHSEALSTWRNLASAHPVFKLLOPHIYGVLAIDTIGRKELIGSGGIVDOSLSLGGGG PPLFLPTDPPMVWLAKCWVRSSDF0VHELNSHLLRTHSEALSTWRNLASAHPVFKLIOPHIYGVLAIDTIGRKELIGSGGIVDOSLSLGGGG MFVRPAESESDLYWG <mark>NOMAK</mark> TVVQVAEENYHEMPVHLACTHLVSEAECLATORTLAPSHPLHVLLAPHFEGTLFINEGAARILLPSAGFIDVMFAAPIQD		
_	2IUJ 2IUK 2FNQ 1LOX NSPLOX	577 589 455 425 424	SLEMSAVIYKDWVFTDQALDNDLVKRGVAVKDPSAPHGVRLLTEDYPYASDGLETWDAIKSWVEEYVSFYYKSDEELQKDPELQAWWKELVEVGHGD SIEMSSSVYKNWVFTHQALDADLVKRGLAIEDPSAPHGLRLVTEDYPYAVDGDEIMDAIKTWVHEYVSLYYPTDAAVQQDTELQAWWKELVEGHGD HVTFMEKCFKEVNLQOYHLDNALKRGVDDPSKLUGPFYYRDDGLALWEAIETFIGEIIAIFYKNDDDVKRDNDEIQSWIYDVHKNGWRVNPG HVQLLQQAGAFLTYRSFCPDDDADRGLGVDPSKLLGVESFYAQDALRLWEIISRYVQGIMGLYYKTDEAVRDDLELQSWCREITEIGLQG TQATAGGNRLGFDFYRGMLDESLMARNVDDPAALFPTYPYRDDGLVWNAIRQWAADYVAVYYASDGDVTADVELAAWVGEVIGSG		
	2IUJ 2IUK 2FNQ 1LOX NSPLOX	674 686 546 510 509	LKDKPWWQKMQTREELVEASATLIWIASALHAAVNFCQYPYGGLTLNRPTISRRFMEEKGSPEYDALAKNPEKEFLKTITGKKETLIDLTIIEINSRHAS LKEKPWWPKKQTTEDLIQSCSIIVWTASALHAAVNFCQYPYGGLILNRPTLARRFIPAEGTPEYDEMVKNPQKAYLRTITPKFETLIDLSVIEINSRHAS HQDHGVPASFESREQLKEVLTSLVPTPSCCHAAVNFSOKDHYGFTPNAPAVLRHPPKKKGEATLQSILSTLPSKSQAAKAIATVYIIETKFSE AQKQGFPTSLQSVAQACHFVTMCIFTCTCGUSSIHLGOLDWFTWVPNAPCTMRLPPTTKDATLETVMATLPNLKQSSLQMSIVWQMGRDQP KVAGFRPITGRSQLVEVLTMVIFTASAQHAAVNFPQPSMMTYAPAICAMSAAPAPDSPSGKSEADWLKMMPPTLVALEKVNIYHLMGSV		
/	2IUJ 2IUK 2FNQ 1LOX NSPLOX	774 786 639 602 598	DEFYLGORDGGDYWTSDAGPLEAFKEIGKNUEETEKKLIEKNNDETLENRYGPAKMPYTLLYPSSEEGLTFRGIPNSISI DEIYLGERETPNWTTDKKALEAFKEIGSKUTGLEGKINARNSDPSLRNRTGPVQLPYTLUHRSSEEGLTFKGIPNSISI DERYLGNYSATAWEDKDALDAINEIONKUETOSKUTGIEGKINARNSDPSLRNRTGPVQLPYTLUHRSSEEGLTFKGIPNSISI DERYLGONGEYFSGFEPRAVUEKOKEEDAINDETOKKEIKORNENLEVPYIYLLPERIPNGTAI IMVPLGQNQEEYFSGFEPRAVUEKKEEDAINMKEVENEKLEVPYIYLLPERIPNGTAI YHGR <mark>LG</mark> DYRQTGFPYAPVFSDRRVTASGGPLERFQARIKEVEATIRTRNOARRKPYEYLLP <u>SR</u> IP <mark>ASTNI</mark>		

Table 1 Data collection and structu	ural refinement statistics for LOX	ра
	Data collection statistics	
Space group	P2 ₁ 2 ₁ 2	
Unit Cell parameters a, b, c (Å)	132.7, 116.0, 42.6	
Resolution (Å)	20 – 1.75 (1.81 1.75)	
Unique reflections	66015 (6460)	11 1.010
Completeness (%)	97.9 (97.0)	
R _{sym} (%)	9.1 (63.0)	
<i σi=""></i>	10.7 (2.5)	
Redundancy	3.9 (3.5)	
	Model refinement statistics	
Resolution	20 – 1.75 (1.79 1.75)	10% PEG 3350 0.05M MgCl2
No. of reflections	62559 (4440)	0.1M Hepes pH 7.5
Free reflections	3322 (243)	
R _{cryst} (%)	19.2 (25.7)	
R _{free} (%)	23.3 (29.3)	
No. residues	636	

OXIDOREDUCTASES

- 1) Catalases
- 2) Peroxidasa KatG
- 3) Peroxisoma i MLYCD
- 4) Lipoxygenasa
- ALTRES EXEMPLES
- 5) Transportador de membrana

Oxidoreductases

Table 1. Examples of Redox-Regulated Proteins		
Type of Protein	Protein	
Transcription Factor	c-Jun/c-Fos	
(OxyR	
	OhrR	
	Hsf1 KatG	
	Nrf-2/Keap-1	
	Bach1	
Kinase	JNK	
	Sty1 (Spc1, Phh1)	
	MEKK1 (MAPKKK)	
	IKKbeta	
	PKA RI (regulatory subunit)	
	PKA C (catalytic subunit)	
	Src tyrosine kinase	
Phosphatases	LMW-PTPs	
	PTEN	
	Cdc25C	
	PTP1B	
Ion Channels	Ryanodine receptors	
	K(ATP) channels (ATP-sensitive potassium channels)	
Other	Serotonin N-acetyl transferase	
	RNase H1	
	GAPDH	
	SUMO E1 subunit Uba2/ E2-conjugating enzyme Ubc9	

Molecular Cell 26, April 13, 2007

-

 H_2O_2 actúa com a missatger 2^{ari} (i amplificador!) en el càncer de mama

Estat intermedi d'un enzim?

Estat "A"

Estat "B"

Estat intermedi d'un enzim?

OH | 1.79 (1.82) DFT 1.82 / 1.90 X-Ray Fe

+ radical proteïna

+ radical porfirina

Fe 1. 72 / 1.75 X-ray

Alfonso-Prieto M *et al.* <u>The Structures and Electronic Configuration of Compound I Intermediates of</u> <u>Helicobacter pylori and Penicillium vitale Catalases Determined by X-ray Crystallography and QM/MM</u> <u>Density Functional Theory Calculations.</u> *J Am Chem Soc.* 2007 Apr 11;129(14):4193-4205.

Un mutant inactiu (H128N) de la catalasa HPII, ens va permetre obtenir un complexe amb H_2O_2 directament

50.000 - 800.000 reaccions/s

> Melik-Adamyan W, Bravo J, **Carpena X**, Switala J, Mate MJ, Fita I, Loewen PC. <u>Substrate flow in catalases deduced from</u> <u>the crystal structures of active site variants of HPII from Escherichia coli</u>. Proteins. 2001 Aug 15;44(3):270-81.

membrane

8

Es creu que el H₂O₂ pot tenir un efecte activador del sistema inmunitari

Es creu que el H₂O₂ pot tenir un efecte activador del sistema inmunitari

DIANES DE L'ISONIAZIDA

Argyrou et. al. Nat Struct & Mol Biol 13, 408 - 413 (2006)

Rozwarski et al. Science 279, 98-102 (1998)

> 2B infectat (1/3^{era} part de la població mundial)

2007 Nous MDRTB

India	131.000
China	112.000
Russian Fed.	43.000
S. Africa	16.000
Bangladesh	15.000
-	

Gene	Mutation
katG	G->C pos 944, S315T
	G->A pos 944, S315N
	G->A pos 836, G279D
	G->A pos 946, R316Q
	A->C pos 970, T324P
гроВ	C->T pos 1350, S531L
	A->G pos 1335, H526D
	A->T pos 1305, D516V

S315T es troba en ~50% de les soques resistents a INH

	C->G pos 1334, H526D
	C->G pos 1350, S531L
	C->A pos 1273, F505L
	T->C pos 1290, L511P
	C->A pos 1295, Q513K
embB	A->G pos 917, M306I
	G->A pos 919, M306I
	A->C pos 917, M306L
	A->C pos 957, Y319S
	G->A pos 949, M316I
	G->C pos 919, M306I
pncA	C->T pos 195, S65S
	A->C pos 535, S178R
	A->C pos 35, D12A
	Del C pos 344, STOP116
	Del G pos 166, STOP116
	Ins G pos 234, STOP126
	Ins G pos 394, Frameshift
	T->C pos 104, L34P
	G->C pos 357, W119C
	G->C pos 481, A160P
katG ⁴⁶³	CTG->CGG pos 463
gyrA ⁹⁵	No mutations observed

Stavrum R. et al. PLoS. V4, 2: e4540 (2009)

Catalasa HPII

Cat-Px KatG

Peroxidasa CCP

Superfamília de les peroxidases de plantes

-Classe I: bacterial origin (CCP, APX, KatG)

-Classe II: fungal secreted (LiP, ARP)

-Classe III: plant secreted (HRP, PNP)

Donald LJ, Krokhin OV, Duckworth HW, Wiseman B, Deemagarn T, Singh R, Switala J, **Carpena X**, Fita I, Loewen PC. *J Biol Chem. 2003 Sep 12;278(37):35687-92..*

Carpena X. et. al. J Mol Biol 327, 475 - 489 (2003)

Carpena X, Wiseman B, Deemagarn T, Singh R, Switala J, Ivancich A, Fita I, Loewen PC. <u>A molecular switch and electronic</u> <u>circuit modulate catalase activity in catalase-peroxidases</u>. EMBO Rep. 2005 Dec;6(12):1156-62.

Carpena X et al. <u>Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of the catalase-peroxidase KatG</u> <u>from Burkholderia pseudomallei inferred from pH-induced structural changes</u>. Biochemistry. 2006 Apr 25;45(16):5171-9.

Loewen PC, Carpena X, Vidossich P, Fita I, Rovira C. J Am Chem Soc. 2014 May 21;136(20):7249-52

Vidossich P, Loewen PC, **Carpena** X, Fiorin G, Fita I, Rovira C. <u>Binding of the</u> <u>Antitubercular Pro-Drug Isoniazid in the Heme Access Channel of Catalase-</u> <u>Peroxidase (KatG). A Combined Structural and Metadynamics Investigation.</u> J Phys Chem B. 2014 Mar 20;118(11):2924-31

Biology N.Campbell and J. Reece 2008 Pearson Education

Peroxisoma

A dia d'avui, hi ha 32 peroxines conegudes (Gens Pex)
82 enzims (Catalasa, tiolasa, oxidases, SOD...)

Biosíntesi: Colesterol, àcids biliars, àcids grassos insaturats, plasmalògens
 Degradació: Radicals liures (OH, O₂), etanol, oxidació d'àcids grassos, H₂O₂

ZS (Síndrome de Zellweger) (12 gens Pex involucrats)

Dimorfisme facial

Endarreriment mental

Risc de mort a partir dels 6 mesos de naixement

> NALD (Adrenoleucodistrofia neonatal) (5 gens Pex)

Endarreriment mental

Atrofia muscular

> RCDP (Condrodisplàsia rizomèl·lica) (gen Pex7)

Problemas psicomotors

Dimorfismo facial

> AM (Acidúria malònica) (Malonil-coA descarboxilasa)

Convulsions

Endarreriment mental

Grau de severitat de les malalties

ZS > NALD > RCDP > AM

Annu. Rev. Genomic Hum. Gen. Weller et. al. 2003

Peroxisoma

Resolució estructural de Malonil-CoA decarboxilasa

MCD no és un tetramer perfecte

Peroxisoma

Dioxigenases de ferro que catalitzen l'addició d'un grup hidroperòxid en substractes 1,4 - Z-Z pentadienils.

Àcid Linoleic

Vies de les oxilipines (plantes)

Biosintesi de Leucotriens (mamífers)

The spread of mammary carcinoma from the primary tumour to consecutive lymph nodes requires the lipoxygenase-derived eicosanoid 12(S)-HETE.

Kerjaschki D et al, J Clin Invest. 2011 (121): 2000-12

In vitro)

(In vivo)

Val-Moraes SP, García-Fernández Q, Busquets M, Juan C, Oliver A, Ortiz A, Gaffney BJ, Fita I, Manresa À, **Carpena X**. <u>Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas</u> <u>aeruginosa.</u> FASEB J. 2013 Dec;27(12):4811-21

Mutants inactius cristal·litzats: V89F \rightarrow 0% actiu davant Àcids Grassos V86F \rightarrow <25% actiu davant Àcids Grassos

The Alternating Mechanism of Transport of AdiC, a Neurotransmitter Structural Homologue

Dr. Xavi Carpena IBMB-CSIC IRB-Barcelona

The large Neurotransmitter: Na+ Symporter (NSS) family

Monoamines (Dopamine (DAT), Norepinephrine (NET), Serotonine (SET) Aminoacids (GABA, Gly, Pro, Tau) Osmolytes (Betaine and creatine)

LeuT's crystal structure contribution: the alternating access transport mechanism

Yamashita A et al. (2005) Nature 437:215-23

but still many open questions:

- how did the substrate promoted the occlusion?
- what law translates outward into inward facing?
- do all $(5+5)_{IR}$ transits out <> IN similarly?

(2/24)

X-Ray Crystallography deepen our knowledge of (5+5)_{IR} Transporters

Ago 2005: LeuT, Out, Subs-Occ	2A65	Ago 2009: ApcT
Ago 2008: vSGLT, In, Subs-Occ	3DH4	Feb 2010: AdiC,
Oct 2008: Mhp1, Out, Open	2JLN	Mar 2010: CaiT,
Oct 2008: Mhp1, Out, Subs-Occ	2JLO	Mai 2010: Mhp ²
Feb 2009: BetP, Eq, Full-Subs-Occ	2WIT	Set 2010: CaiT,
Jun 2009: AdiC, Out, Open	3LRB	Set 2010: CaiT,
Jul 2009: AdiC, Out, Open	3NCY	Ago 2008: vSGL
		Mar 2011: BetP

2009: ApcT, Eq, Full-Occ	3GIA
2010: AdiC, Out, Subs-Occ	3L1L
2010: CaiT, In, Semi-Occ	3HFX
2010: Mhp1, In, Open	2X79
010: CaiT, In, Semi-Occ	2WSX
010: CaiT, In, Open	2WSW
2008: vSGLT, In, Subs-Occ	2XQ2
2011: BetP, In, Semi-Occ	3P03

LeuT-fold is also present in the light chain of Heteromeric Aminoacid Transporters (HATs)

Structural determinants of Arg+ binding: N101 mutant

Transport kinetics #			Binding (ITC)
AdiC variant	V _{MAX}	<i>Κ_Μ</i>	Apparent Kd
	(pmol/µg∙min)	(μΜ)	(μM)
wild-type	36, 64	31, 42	95, 97, 100, 122
W293Y	5.1, 8.7	122, 133	no signal
N101A	0.7, 0.8	93, 111	no signal
N101D	89, 101	110, 100	112
	-	-	

A Crystallographic Structural Project: AdiC

SEC: CYMAL6 (0.056%) + 2mM Arg

The Missing step of the transport cycle

Docking on 3LRB structure represents a semi-occluded state

An Arg+ in the active site

Arg⁺ induced fitting

A fluctuable Arg+ is present in its active site

The existence of a two-fold axis is a common event in all (5+5) T

	Rot. 1	Rot. 2	Error Traslació	Dist. CM Subs.
AdiC_3L1L	177.2	91.24	0.97	3.09
AdiC_N101A	175.2	89.98	0.02	5.78
ApcT_3GIA	178.2	90.86	0.66	8.10 (wats)
BetP_2WIT	179.9	91.00	0.74	0.87
CaiT_2WSX	177.9	91.65	1.12	3.37
CaiT_3HFX	176.2	90.70	0.48	4.43 / 3.02
LeuT_2A65	172.7	89.89	0.09	1.63
Mhp1_2JLN	170.6	91.33	0.97	
Mhp1_2JLO	175.1	91.59	1.11	5.25
vSGLT_3DH4	178.9	90.27	0.22	5.02

Protein architecture (TM orientation versus 5+5 axis) dictates the conformational changes

Is it possible to predict conformational changes of AdiC during transport?

Unified vision of (5+5)_{IR}_T global movements

Symmetry model validation using Mhp1

2JLN

Weyand S et al (2008) Science 322:709-13

2X79

Shimamura T et al (2010) Science 328:470-3

And what happens to the substrate? A second likely binding site in AdiC

	Rot. 1	Rot. 2	Error Traslació	Dist. CM Subs.
AdiC_3L1L	177.2	91.24	0.97	3.09
AdiC_N101A	175.2	89.98	0.02	5.78
ApcT_3GIA	178.2	90.86	0.66	8.10 (wats)
BetP_2WIT	179.9	91.00	0.74	0.87
CaiT_2WSX	177.9	91.65	1.12	3.37
CaiT_3HFX	176.2	90.70	0.48	4.43 / 3.02
LeuT_2A65	172.7	89.89	0.09	1.63
Mhp1_2JLN	170.6	91.33	0.97	
Mhp1_2JLO	175.1	91.59	1.11	5.25
vSGLT_3DH4	178.9	90.27	0.22	5.02

CONCLUSIONS

- Last step of the alternating access model of transport
- Induced fitting of the substrate
- All (5+5)IR_T are related by a pseudo-2-fold axis
- Each (5+5)_{IR}_T's architecture (with respect to its internal symmetry axis), dictates its conformational changes
- All conformational states of (5+5)IR_T are symmetrically related

Acknowledgments

CRI2 (Fita's group)

Mercè Ratera Alícia Guasch Luca Martinelli Rosa Pérez-Luque Maria Adell Albert Garreta David Aparicio Ignasi Fita

Palacín's group

Lukasz Kowalczyk Mercè Ratera Eva Valencia Paola Bartoccioni Ekaitz Errasti Susanna Bial José L. Vázquez-Ibar Manuel Palacín

ibmb

de Barcelona

Institut de Biologia Molecular

CSIC

Agència de Gestió d'Ajuts Universitaris i de Recerca

Prof. Ignasi Fita's group

Prof. Manuel Palacín's group

AND ALL OF YOU FOR YOUR ATTENTION!

Acnowledgments

IUCr (International Union of Crystallography)

<u>B. Strandberg et al. 50 Years of Protein Structure Analysis.</u> JMB (2009). 392, 2-32

Biología Estructural 1986/2011. JL Campos, C. Abad-Zapatero, I. Fita

Crystallography across the sciences.